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MESSAGE ENCODING

- message m of length k, with symbols from alphabet of size g

—~  meF

- codeword c of length n, with symbols from alphabet of size g

— ceIB‘g

- encoding algorithm Enc that maps message into codeword

. ok
— Enc.]Fq—>]Fg
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MESSAGE ENCODING

Encoding is commonly defined via a generator matrix, G € IFSX“:

vm e IFE, Enc(m) := m'G.

A code, C, is then defined as:

C:={ceF]|(3m € F{) c = Enc(m)}.
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Equivalently, linear code can be defined via a parity check matrix,

H e F{"™9"" which is a matrix of maximal rank that satisfies:

HG' = 0.

A code, C, is then defined as:

C:={ceFy|Hc=0}.
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Linear codes

MESSAGE DECODING
- error e of length n, with symbols from alphabet of size q

— eeIFg

- noisy codeword € := ¢ + e of length n, with symbols from
alphabet of size g

— Ee]Fg

- decoding algorithm Dec that maps noisy codeword, €, into
codeword c e C

— Dec:]FQ—HFg
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Linear codes

HAMMING WEIGHT

Hamming distance, disty(-)

V¢ =(Co, .-, Cn1) € Fg, V€= (Co, ..., Cnn) € Fy,
distu(c,€) = |{i € [n] : ¢; # &}

Hamming weight, wt(-)

Ve = (eq,...,en) € F}

Q> th(e) = distH(e,O).



Preliminaries
[eJe]e] ]

Linear codes

MESSAGE DECODING

Decoding methods:



Preliminaries
[eJe]e] ]

Linear codes

MESSAGE DECODING

Decoding methods:

- minimum distance decoding - given the noisy codeword, ¢, find
the codeword, ¢, at smallest Hamming distance;



Preliminaries
[eJe]e] ]

Linear codes

MESSAGE DECODING

Decoding methods:

- minimum distance decoding - given the noisy codeword, ¢, find
the codeword, ¢, at smallest Hamming distance;

- syndrome decoding: calculate the syndrome, s € Fgfk, defined
as:
s :=HC = H(c+ e) = He,
find the error, e, of the smallest Hamming weight that
corresponds to s.
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Computational problem derived from the syndrome decoding
method.
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Syndrome Decoding Problem, SDP

Input — A parity check matrix H € ]Fé”’k)”, a syndrome s € F3~, and
a weight w € N.

Goal - Find an error e € Fj such thats = He and = wt(e) = w
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SYNDROME DECODING PROBLEM

An NP-complete problem.

TElwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On the
inherent intractability of certain coding problems (Corresp.)". In: (1978), pp. 384-386.
DOI: 10.1109/TIT.1978.1055873.


https://doi.org/10.1109/TIT.1978.1055873
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SYNDROME DECODING PROBLEM

An NP-complete problem.

For conveniently chosen parameters, the problem is exponentially
hard for the best known classical and quantum algorithms.

Used as basis of different cryptographic protocols.?

TR. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic Coding Theory”. In:
Deep Space Network Progress Report 44 (Jan. 1978), pp. 114-116.

2Jacques Stern. “A New Identification Scheme Based on Syndrome Decoding”. In:
1993, pp. 13-21. DOI: 10.1007/3-540-48329-2\_2.


https://doi.org/10.1007/3-540-48329-2\_2
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Generalized Syndrome Decoding Problem, GSDP

n—k)xn

Input - A parity check matrix H € ]Fé
a weight w € N.

,a syndrome s € F3~, and

Goal - Find an error e € Fj such thats = He and | wtw(e) = w
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Generalization

Elementwise weight functions, wty : F§ — N

Ve = (eo,...,en_1) €FG, wtm(e) =>_dist(e;,0),
i

where dist : Fq x Fq — N is a distance function (metric).
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Generalization

EXAMPLES OF ELEMENTWISE WEIGHT FUNCTIONS

Hamming distance, disty(-, -)

0, a=b

Va,b € Fq, disty(a,b) = ;
1, otherwise

Hamming weight, wt;(-)

Ve = (e1,...,en) € Fg, wty(e) = [{i € [n]: e # 0}].
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EXAMPLES OF ELEMENTWISE WEIGHT FUNCTIONS

Lee distance, dist, (-, -)

Va,b € Fq, dist(a,b) = min(la —b|,q — |a —bJ).
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Generalization

EXAMPLES OF ELEMENTWISE WEIGHT FUNCTIONS

Lee distance, dist, (-, -)

Va,b € Fq, dist/(a,b) = min(la —b|,q — |a — bJ).
Lee weight, wt(-)

Ve = (ey,...en) €FY,  wt(e) = w(e).
i
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Generalization

OUR GOALS

Estimate the asymptotic complexity of the generalized syndrome
decoding problem.

Apply the generalized syndrome decoding problem to a concrete
cryptographic setting.
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Introduction

INFORMATION SET DECODING

The best generic algorithms for solving the syndrome decoding
problem.

Exploit the linear structure of the linear codes.
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Algorithm Information set decoding

Input : He FU 9" se Rl w,d,leN.

Output: e € F§ st He=s and wtu(e)=w.

while e is not found do

permutation step: permutes columns of H

partial Gaussian elimination step: given permuted Hand s, as well
as d and |, creates a GSDP subinstance

multi-solution GSDP step: returns a list £ of solution to the GSDP
subinstance

test step: checks if any solution from the list £ yields a solution
to the original problem

end
return e
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partial Gaussian elimination step: given permuted H and s, as well
as d and |, creates a GSDP subinstance

e+ Hiep = sy
UH, = (P M) s (1) =
0 H, S Hye; =s;

e
where e, = ( !

. > is a permuted solution to the problem
2
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UH, = (- M) us= () =
0 H, S Hye; =s;
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where e, = <e1> is a permuted solution to the problem
2
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GSDP-subinstance given on  (H,, s;,d)
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Introduction

partial Gaussian elimination step: given permuted H and s, as well
as d and |, creates a GSDP subinstance

e + quz =S
UH, = (- M) us= () =
0 H, S Hye; =s;

e\ . .
where e, = <e1> is a permuted solution to the problem
2

multi-solution GSDP step: return £ as a list of solutions e, to the

GSDP-subinstance given on  (H,, s;,d)

test step: foreach e; € £, calculate e+ sy —Hie,  and verify if

th(e1) =w-—d
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Introduction

DIFFERENT (CLASSICAL) ISD VARIANTS

ISD algorithms differ primarily in the last two steps of the algorithm,
namely, Multi-solution SDP step and Test step.

Prange’s algorithm?® takes e «+ (s&) and verify if wty(e) = w.

2E. Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Transactions on Information Theory (1962), pp. 5-9. DOI:
10.1109/TIT.1962.1057777.



https://doi.org/10.1109/TIT.1962.1057777
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Introduction

DIFFERENT (CLASSICAL) ISD VARIANTS

ISD algorithms differ primarily in the last two steps of the algorithm,
namely, Multi-solution SDP step and Test step.

Lee-Brickel's algorithm?, for each e, of weight d, calculates
€1 S — H]EQ

and verify if wty(e) = w —d.

aPil Joong Lee and Ernest F. Brickell. “An Observation on the Security of
McEliece’s Public-Key Cryptosystem”. In: 1988.
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DIFFERENT (CLASSICAL) ISD VARIANTS

ISD algorithms differ primarily in the last two steps of the algorithm,
namely, Multi-solution SDP step and Test step.

Stern’s/Dumer’s algorithm@, merges two lists of elements of weight
d/2 to obtain a list, £, of elements of weight d.

For each e, in £, the algorithm calculates
e < S — H192

and verify if wty(eq) = w — d.

dJacques Stern. “A New |dentification Scheme Based on Syndrome Decoding”.
In: 1993, pp. 13-21. pOI: 10.1007/3-540-48329-2\_2.
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DIFFERENT (CLASSICAL) ISD VARIANTS

ISD algorithms differ primarily in the last two steps of the algorithm,
namely, Multi-solution SDP step and Test step.

Wagner's algorithm?, for a chosen a, merges 22 lists of elements
of weight d/22 to obtain a list, £, of elements of weight d.

For each e, in £, the algorithm calculates
€, <+ S — Hqey

and verify if wty(eq) = w — d.

dJacques Stern. “A New Identification Scheme Based on Syndrome Decoding”.
In: 1993, pp. 13-21. DOI: 10.1007/3-540-48329-2\_2.



https://doi.org/10.1007/3-540-48329-2\_2
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Our contributions

OUR CONTRIBUTIONS: PART 1

Generalized ISD framework solving the generalized syndrome
decoding problem.

Derivation of a hybrid quantum-classical ISD algorithm.

Numerical results on the asymptotic analysis of the running time of
ISD when solving GSDP over g-ary Hamming and Lee weight.
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Our contributions

CLASSICAL ISD ALGORITHMS

The choice of |, d, and a give us the following algorithms:

- l=0, d=0, a=1= Prange’s algorithm?;

3E. Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Transactions on Information Theory (1962), pp. 5-9. DOI:
10.1109/TIT.1962.1057777.


https://doi.org/10.1109/TIT.1962.1057777
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CLASSICAL ISD ALGORITHMS

The choice of |, d, and a give us the following algorithms:

- 1=0,d=0, a=1= Prange’s algorithm;
- 1l=0,d>0, a=1= Lee-Brickel's algorithm?;

3Pil Joong Lee and Ernest F. Brickell. “An Observation on the Security of McEliece’s
Public-Key Cryptosystem”. In: 1988.
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Our contributions

CLASSICAL ISD ALGORITHMS

The choice of |, d, and a give us the following algorithms:
- 1=0,d=0, a=1= Prange's algorithm;
- 1l=0,d>0, a=1= Lee-Brickel's algorithm ;
- 1>0,d>0, a=1= Stern's/Dumer’s algorithm?;

3Jacques Stern. “A New Identification Scheme Based on Syndrome Decoding”. In:
1993, pp. 13-21. pOI: 10.1007/3-540-48329-2\_2.


https://doi.org/10.1007/3-540-48329-2\_2
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Our contributions

CLASSICAL ISD ALGORITHMS

The choice of |, d, and a give us the following algorithms:

- 1=0,d=0, a=1= Prange’s algorithm;

- 1l=0,d>0, a=1= Lee-Brickel's algorithm ;

- 1>0,d>0, a=1= Stern’s/Dumer’s algorithm ;
- 1>0,d>0, a>1= Wagner's algorithm?.

3David A. Wagner. “A Generalized Birthday Problem”. In: ed. by Moti Yung. 2002,
pp. 288-303. DOI: 10.1007/3-540-45708-9\_19.


https://doi.org/10.1007/3-540-45708-9\_19
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Our contributions

Input : HeF 9" seFl™* w.dleN

Output: e € F§ st. He=s and wtu(e)=w.
while e is not found do

permutation step: permutes columns of H poly(n)

partial Gaussian elimination step: given permuted H and s, as well

as d and |, creates a GSDP subinstance poly(n)
multi-solution GSDP step: returns a list £ of solution to the GSDP

subinstance Tsug
test step: checks if any solution from the list £ yields a solution

to the original problem |L] poly(n)

end
return e




Our contributions

Running time of classical ISD algorithms

poly(n) +Tsus(n, 1, d,a) + |£| poly(n)

Te(n,1,d,a) = p(n, L, d,a) )

where p(-,-,-,-) is the probability of success in the test step.
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Our contributions

Probability of success

surfu(g,n — k—Lw —d) | |)

l.d = min (1
p(nv ) 7a) mln( 9 max (qn_k,SLll’fM(q7nvv\/))q_L

where
- surfm(qg, n,w) is the surface area of a sphere of radius w in F,

- surfu(g,n — k—L,w — d) is the surface area of a sphere of radius
w—din Fg_k_l.
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Our contributions

Probability of success

surfu(g,n — k—Lw —d) | |)

l.d = min (1
p(nv ) 7a) mln( 9 max (qn_k,SLll’fM(q7nvv\/))q_L

where
- surfm(qg, n,w) is the surface area of a sphere of radius w in F,

- surfu(g,n — k—L,w — d) is the surface area of a sphere of radius
w—din Fg_k_l.

Major obstacle: calculating the surface area of a sphere in a vector
space endowed with arbitrary elementwise weight function.
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Our contributions

QUANTUM WAGNER'S ALGORITHM

A hybrid classical-quantum algorithm was obtained as a
combination of:

- classical Wagner's algorithm,
- Grover's search®,

- amplitude amplification®.

“Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
1996, pp. 212-219. pol: 10.1145/237814.237866.

>Gilles Brassard, Peter Hpyer, et al. Quantum amplitude amplification and
estimation. 2002.

22


https://doi.org/10.1145/237814.237866

Information Set Decoding (ISD)

0000080

Our contributions

QUANTUM WAGNER'S ALGORITHM

Definition: Grover's algorithm*

Let f: {0,1}" — {0,1} has an efficient classical description.

Grover's algorithm can find i such f(i) = 1in time O(poly(n)2"/?) if
such an i exists and output 'no solution’ otherwise.

“Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
1996, pp. 212-219. pol: 10.1145/237814.237866.

22


https://doi.org/10.1145/237814.237866
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QUANTUM WAGNER'S ALGORITHM

Definition: Amplitude amplification”

Let f: {0,1}" — {0,1} has an efficient classical description.

Consider an algorithm A that outputs i such that f(i) = 1 with
probability p, and f(i) = 0 with probability 1— p.

Using amplitude amplification, one can find i such that f(i) = 1 by
making O(ﬁ) calls to A.

“Gilles Brassard and Peter Hoyer. “An Exact Quantum Polynomial-Time Algorithm
for Simon’s Problem”. In: 1997, pp. 12-23. pOI: 10.1109/ISTCS.1997.595153.

22
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The difference appears only in the multi-solution GSDP step and
test step:

22
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The difference appears only in the multi-solution GSDP step and
test step:

- in the multi-solution GSDP step, the algorithm returns a
description of a function f : [|£]] — [F§
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Our contributions

QUANTUM WAGNER'S ALGORITHM

The difference appears only in the multi-solution GSDP step and
test step:

- in the multi-solution GSDP step, the algorithm returns a
description of a function f : [|£|] — Fq

- in the test step the algorithm checks if any output of f(+) yields
a solution to the original problem using Grover’s search

22
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Our contributions

QUANTUM WAGNER'S ALGORITHM

Input : HeF{ ™" seF~* w,dlLaeN.
Output: eeFy st He=s and wtu(e)=w.

while e is not found do
permutation and partial Gaussian elimination step: permute columns

of H and create a GSDP subinstance poly(n)

multi-solution GSDP step: returns a description of f : [|£]] — Fq that

outputs solutions to the GSDP subinstance Tsus

test step: using Grover’s search, checks if any output of f(+) yields a so-

lution to the original problem v/ |L] poly(n)

end
return e

22
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Our contributions

QUANTUM WAGNER'S ALGORITHM

Running time

Tl Il ) — poly(n) +Tsys(n, L, d,a) + +/|£] poly(n)7

Vvp(n,l,d,a)

where p is the probability of success in the test step.

22
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NUMERICAL RESULTS

The asymptotic running time is evaluated when parameters [, d, and
a are optimized to yield the shortest running time.

23
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Our contributions

NUMERICAL RESULTS

The asymptotic running time is evaluated when parameters [, d, and
a are optimized to yield the shortest running time.

Exponent of the asymptotic running time, 7

1
T(qa R,W) = nll[go H |0g2 T(n)7

where R := X and w :=

S|s

23
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NUMERICAL RESULTS

q=3, R=04
- -prange ' T T T
dumer
wagner
quantum wagner|
! L 1 A L L bz,
0.1 0.3 04 0.5 0.6 0.7 08 0.9
¢=23, R=05
T T T
:z n Il Il L L Il
0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9
¢=163, R=05
T T T
= L L L L L
0.5 0.6 0.7 0.8 0.9
w
H H . . 1 .k .
Hamming weight setting: 7(q, R,w) = limy 0 = log, T, R:= 3, and w :

W
n

23
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NUMERICAL RESULTS

- - -prange
dumer
wagner

""" quantum wagner|
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SUMMARY OF THE FIRST PART

The asymptotic complexity of the hardest instances of GSDP
problem is in the Lee weight setting is at least as long as in the
Hamming weight case.
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problem is in the Lee weight setting is at least as long as in the
Hamming weight case.

For the quantum setting, our algorithms have almost a quadratic
improvement over the classical setting.
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Summary

SUMMARY OF THE FIRST PART

The asymptotic complexity of the hardest instances of GSDP
problem is in the Lee weight setting is at least as long as in the
Hamming weight case.

For the quantum setting, our algorithms have almost a quadratic
improvement over the classical setting.

The GSDP problem remains exponentially hard for conveniently
chosen parameters both in the classical and quantum setting.

2%
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Introduction

STERN'S IDENTIFICATION PROTOCOL"

Belongs to the class of so-called sigma or three-round protocols.

“Jacques Stern. “A New Identification Scheme Based on Syndrome Decoding”. In:
1993, pp. 13-21. pOI: 10.1007/3-540-48329-2\_2.

26


https://doi.org/10.1007/3-540-48329-2\_2
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Introduction

STERN'S IDENTIFICATION PROTOCOL"

Belongs to the class of so-called sigma or three-round protocols.

The security of the original protocol relies on the hardness of binary
SDP over the Hamming weight.

“Jacques Stern. “A New Identification Scheme Based on Syndrome Decoding”. In:
1993, pp. 13-21. pOI: 10.1007/3-540-48329-2\_2.

26


https://doi.org/10.1007/3-540-48329-2\_2

s identification protocol

Introduction

STERN'S IDENTIFICATION PROTOCOL"

Belongs to the class of so-called sigma or three-round protocols.

The security of the original protocol relies on the hardness of binary
SDP over the Hamming weight.

The protocol is unbroken for almost 30 years now, but suffers from
rather high communication costs.

“Jacques Stern. “A New Identification Scheme Based on Syndrome Decoding”. In:
1993, pp. 13-21. pOI: 10.1007/3-540-48329-2\_2.
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Prover Verifier

(m, init) < Pq(sk) b < Ver(pk,c,r) =m

r < Py(sk, init, )

Verifying
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SIGMA (3-ROUND) PROTOCOL

Basic properties:
- completness: honest prover needs to be able to convince
verifier it knows sk;

- soundness: dishonest prover is not able to convince verifier it
knows sk with probability 1,

- zero-knolwedge: communication reveals only if prover knows sk
and nothing else.



s identification protocol

Introduction

STERN'S IDENTIFICATION PROTOCOL

Prover

Key generation

28



s identification protocol

Introduction

STERN'S IDENTIFICATION PROTOCOL

Prover

Key generation

28



Introduction

STERN'S IDENTIFICATION PROTOCOL

Prover Verifier

rd Perm[n], y & g, t < Hy,

Interaction

28



s identification prot

Introduction

STERN'S IDENTIFICATION PROTOCOL

Prover Verifier

& Perm[n], y<i Fg, t <« Hy,
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$
c < {0,1,2}

Prover r

re(a(y),7(€)) = b« my=Hx(y)) A
my < H(m(y) + 7(e)) A wtu(m(e)) = w

Verifying: case c =0
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Basic properties:

- the scheme is complete;
- it is sound, with soundness error of 2/3;

- it is proven to be honest verifier zero-knowledge in the random
oracle model.

28



s identification protocol

Introduction

STERN'S IDENTIFICATION PROTOCOL

Basic properties:

- the scheme is complete;
- it is sound, with soundness error of 2/3;
- it is proven to be honest verifier zero-knowledge.

Soundness error can be reduced arbitrarily close to zero by
repeating the protocol r times.
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Major drawback: high communication costs (order of 100 kB).

— Reduction of communication cost can be achieved using pseudo
random generators and deterministic commitments.
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A honest verifier zero-knowledge variant of Stern’s identification
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A honest verifier zero-knowledge variant of Stern’s identification
scheme adapted to the generalized syndrome decoding problem.

A proof that using deterministic commitments in combination
pseudo random generated random vectors is secure.

>André Chailloux and Simona Etinski. On the (In)security of optimized Stern-like
signature schemes. Cryptology ePrint Archive, Paper 2021/552. 2022.
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0e00

Our contributions

NUMERICAL RESULTS

Obtained for concrete parameters of GSDP that guarantee that the
analyzed algorithms run in 2'2 = 128 bits of security.

The optimized scheme is constructed using deterministic
commitments in combination with pseudo-random generators.
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Stern’s identification f

0e00

NUMERICAL RESULTS

Non-optimized scheme || Optimized scheme
q

wty wt wty wt|
2 253.05 253.05 || 26.21 26.21
3 116.54 116.54 || 21.81 21.81
5 138.54 95.48 27.62 21.41
7 126.47 90.94 || 28.29 22.71
13 113.23 79.27 29.38 23.29

Table: Communication cost of non-optimized and optimized schemes
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Communication cost can be significantly reduced by using
deterministic commitments in combination with the
pseudo-random generation.
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Our contributions

SUMMARY OF THE SECOND PART

Communication cost can be significantly reduced by using
deterministic commitments in combination with the
pseudo-random generation.

Without loss in security, additional reduction can be obtained by
replacing the original SDP with it's generalized version over Lee
weight.
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FUTURE DIRECTIONS

Generalize the asymptotic analysis to the ISD algorithms based on
representation techniques, nearest neighbour search, and
statistical decoding.
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Our contributions

FUTURE DIRECTIONS

Generalize the asymptotic analysis to the ISD algorithms based on
representation techniques, nearest neighbour search, and
statistical decoding.

Apply more advanced communication reduction techniques such as
shared permutations, "MPC in the head”, use quasi-cyclic matrices.
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