
SIEVING FOR CODES:
FROM GJN TO HASH-BASED AND RPC-BASED APPROACHES

February 2024, ATTACC workshop, Germany

presenting: Simona Etinski (CWI)
based on joint work with: Léo Ducas (CWI, LEI),
Andre Esser (TII), and Elena Kirshanova (TII, IKBFU)

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Goal: Make the sieving ”work” for codes.

The idea of adapting the sieving to information set decoding
framework was introduced in [GJN23].

1

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Goal: Make the sieving ”work” for codes.

The idea of adapting the sieving to information set decoding
framework was introduced in [GJN23].

1

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Goal: Make the sieving ”work” for codes.

The idea of adapting the sieving to information set decoding
framework was introduced in [GJN23]1.

1Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

1

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

SIEVING ISD FRAMEWORK

ISD

Sieving

NNS

2

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

SIEVING ISD FRAMEWORK

ISD

Sieving

NNS

2

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

SIEVING ISD FRAMEWORK

ISD

Sieving

NNS

2

SIEVING ALGORITHM

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

(Informal) problem definition

Given a list of N vectors in Sn
w, find N codewords in C ∩ Sn

w.

Remarks on notation:

∙ Sn
w - a sphere of radius w in Fn

2 ;
∙ C ⊆ Fn

2 - an [n, k] binary linear code.

4

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

(Informal) problem definition

Given a list of N vectors in Sn
w, find N codewords in C ∩ Sn

w.

Remarks on notation:

∙ Sn
w - a sphere of radius w in Fn

2 ;
∙ C ⊆ Fn

2 - an [n, k] binary linear code.

4

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

(Informal) problem definition

Given a list of N vectors in Sn
w, find N codewords in C ∩ Sn

w.

Remarks on notation:

∙ Sn
w - a sphere of radius w in Fn

2 ;

∙ C ⊆ Fn
2 - an [n, k] binary linear code.

4

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

(Informal) problem definition

Given a list of N vectors in Sn
w, find N codewords in C ∩ Sn

w.

Remarks on notation:

∙ Sn
w - a sphere of radius w in Fn

2 ;
∙ C ⊆ Fn

2 - an [n, k] binary linear code.

4

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.

Output: L - list of codewords c ∈ C ∩ Sn
w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do

Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do

if (x+ y) ∈ Ci then
Add (x+ y) to L.

end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L

5

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

SIEVING

The running time and the memory:

TSIEVING = Õ(TNNS), MSIEVING = Õ(MNNS).

6

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

REMARKS

Heuristics: The input list elements at any step of the sieving
algorithm behave like uniformly random and independent vectors
from the sphere Sn

w.

7

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

REMARKS

Choice of N: We choose N such that there exist N distinct codewords
of weight w in C and that we maintain the list size in each iteration,
namely

c
(n
w
)(w

w/2
)(n−w

w/2
) ≤ N ≤

(
n
w

)
· 2k−n.

7

NEAR NEIGHBOR SEARCH ALGORITHMS

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

PREVIOUS WORK

[MO15]2, [BM18]3, etc. and Kévin Carrier’s thesis4 explored near
neighbor search in the coding setting.

In the lattice-based setting, sieving was successfully combined with
locality-sensitive hashing (filtering) introduced in [BDGL15].

2Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: 2015.

3Leif Both and Alexander May. “Decoding Linear Codes with High Error Rate and Its
Impact for LPN Security”. In: ed. by Tanja Lange and Rainer Steinwandt. 2018.

4Kévin Carrier. “Recherche de Presque-Collisions pour le Décodage et la
Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding
and recognition of error correcting codes)”. PhD thesis. 2020.

9

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

PREVIOUS WORK

[MO15], [BM18], etc. and Kévin Carrier’s thesis explored near
neighbor search in the coding setting.

In the lattice-based setting, sieving was successfully combined with
locality-sensitive hashing (filtering) introduced in [BDGL15]2.

2Anja Becker et al. New directions in nearest neighbor searching with applications
to lattice sieving. 2015.

9

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

(Informal) problem definition

Given a list L of N vectors of weight w, return a list of pairs of vectors
(x, y) from L × L that satisfy |x+ y| = w.

High-level idea

If two vectors overlap in α positions, they are more likely to be close
in space (aka these are ”near neighbors”).

10

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

(Informal) problem definition

Given a list L of N vectors of weight w, return a list of pairs of vectors
(x, y) from L × L that satisfy |x+ y| = w.

High-level idea

If two vectors overlap in α positions, they are more likely to be close
in space (aka these are ”near neighbors”).

10

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.

Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do

for VALIDFILTERS(Cf, α, x) do
add x to Bc

end
end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do

for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do
if |x+ y| = w then

add (x, y) to P
end

end
end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then

add (x, y) to P
end

end
end
return P

11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.
Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P 11

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

NEAR NEIGHBOR SEARCH

The running time:

TNNS = Õ(N · TVALIDFILTERS) + Õ(N · E(VALIDFILTERS) · E(B)).

The memory: MNNS = Õ(N · E(VALIDFILTERS)).

12

GJN, HASH-BASED AND RPC-BASED

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH3

Main idea
For any x, y ∈ Sn

w satisfying |x+ y| = w, there exists c ∈ Sn
w/2 such that

|x ∧ c| = |y ∧ c| = w/2.

Parameters:

Cf = Sn
w/2, α = w/2.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

w/2 such that |x ∧ c| = w/2.

3Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

14

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Main idea
For any x, y ∈ Sn

w satisfying |x+ y| = w, there exists c ∈ Sn
w/2 such that

|x ∧ c| = |y ∧ c| = w/2.

*Initially, the approach was not presented in the locality-sensitive
filtering fashion, yet it aligns with the framework.

Parameters:

Cf = Sn
w/2, α = w/2.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

w/2 such that |x ∧ c| = w/2.

14

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Parameters:

Cf = Sn
w/2, α = w/2.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

w/2 such that |x ∧ c| = w/2.

14

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Parameters:

Cf = Sn
w/2, α = w/2.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

w/2 such that |x ∧ c| = w/2.

14

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

CODED HASHING APPROACH (HASH)3

Parameters

Cf = Sn
α ∩ CH, α≤ w/2,

where CH is [n,n− r] binary linear code.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

α ∩ CH such that |x ∧ c| = α.

3Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
15

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

CODED HASHING APPROACH (HASH)3

Parameters

Cf = Sn
α ∩ CH, α≤ w/2,

where CH is [n,n− r] binary linear code.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

α ∩ CH such that |x ∧ c| = α.

3Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
15

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

RANDOM PRODUCT CODES APPROACH (RPC)4

Parameters:

C(i)H ⊆ S
n/t
v/t , CH = C(1)H × · · · × C

(t)
H , α, v ≤ w/2 - to be optimized.

Valid Filters Subroutine
For each x = (x(1), . . . x(t)) ∈ L, returns all c = (c(1), . . . c(t)) ∈ Sn

v ∩ CH
such that

|x(i) ∧ c(i)| = α/t for all i ∈ {1, . . . , t}.

4Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
16

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)5

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf|/2d centers but we repeat the
algorithm 2d times.

5Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
17

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)5

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf|/2d centers but we repeat the
algorithm 2d times.

5Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
17

NUMERICAL RESULTS

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

rate κ = k/n

c T
(κ
,ω

)
in

1/
n
lo
g
T IS

D

Prange
GJN
MMT
BJMM
HASH (memo-opt)
RPC (memo-opt)
Both-May

Runtime exponent for different ISD and SievingISD variants.

19

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Type Algorithm κ cT(κ, ω) cM(κ, ω)

SievingISD

GJN 0.44 0.1169 0.0279
HASH 0.44 0.1007 0.0849

HASH memo-opt 0.44 0.1007 0.0830
RPC 0.44 0.1001 0.0852

RPC memo-opt 0.44 0.1001 0.0636

Conventional
ISD

PRANGE 0.45 0.1207 0.0000
MMT 0.45 0.1116 0.0541
BJMM 0.43 0.1020 0.0728

BOTH-MAY 0.42 0.0951 0.0754

Table: Worst case running time 2cT(κ,ω)n and corresponding memory usage
2cM(κ,ω)n for different ISD algorithms.

19

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

0.100 0.105 0.110 0.115 0.120
0

2

4

6

8

·10−2

PRANGE

cT(κ, ω) in T = 2cT(κ,ω)n

c M
(κ
,ω

)
in

M
=

2c
M
(κ

,ω
)n

GJN HASH HASH (memo-opt)
RPC RPC (memo-opt)

Time-memory trade-off curves of different SievingISD instantiations, for
κ = 0.5 and ω = H−1(0.5).

19

CONCLUDING REMARKS

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

An efficient sieving-based algorithm for codes.

→ For the worst case, the efficiency is comparable with BJMM.

0.096

BOTH-MAY

0.101

RPC memo-opt
HASH memo-opt

0.102

BJMM

0.121

PRANGE

0.112

MMT

0.117

21

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

An efficient sieving-based algorithm for codes.

→ For the worst case, the efficiency is comparable with BJMM.

0.096

BOTH-MAY

0.101

RPC memo-opt
HASH memo-opt

0.102

BJMM

0.121

PRANGE

0.112

MMT

0.117

21

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

Instead of sieving on a full instance, we sieve on the ISD
sub-instance.

Instead of shortening vectors, we iteratively reduce the coset size till
we find vectors in the code but we keep their length unchanged.

22

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

Instead of sieving on a full instance, we sieve on the ISD
sub-instance.

Instead of shortening vectors, we iteratively reduce the coset size till
we find vectors in the code but we keep their length unchanged.

22

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

Instead of sieving on a full instance, we sieve on the ISD
sub-instance.

Instead of shortening vectors, we iteratively reduce the coset size till
we find vectors in the code but we keep their length unchanged.

22

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

OPEN QUESTIONS

How applicable it is?

Is it inherently different from the other ISD algorithms?

23

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

OPEN QUESTIONS

How applicable it is?

Is it inherently different from the other ISD algorithms?

23

Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

THANK YOU FOR YOUR ATTENTION!

eprint GitHub repo MCCL fork

24

