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Sieving Algorithm Near Neighbor Search Algorithms GJN, Hash-based and RPC-based Numerical results Concluding remarks

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Goal: Make the sieving ”work” for codes.

The idea of adapting the sieving to information set decoding
framework was introduced in [GJN23].
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(Informal) problem definition

Given a list of N vectors in Sn
w, find N codewords in C ∩ Sn

w.

Remarks on notation:

∙ Sn
w - a sphere of radius w in Fn

2 ;
∙ C ⊆ Fn

2 - an [n, k] binary linear code.
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Algorithm Sieving
Input : C - [n, k] binary linear code, w - weight, N - output size,

Cf - bucket centers, α - bucketing parameter.
Output: L - list of codewords c ∈ C ∩ Sn

w of size |L| = N.

Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}.

Sample N distinct vectors from Sn
w and set as the initial L′.

for i = 1 to n− k do
Invoke near neighbour search oracle NNS(L, Cf, α) to obtain P .

for (x, y) ∈ P do
if (x+ y) ∈ Ci then

Add (x+ y) to L.
end

Discard some elements if |L′| > N and set L′ ← L.
end

end
return L
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SIEVING

The running time and the memory:

TSIEVING = Õ(TNNS), MSIEVING = Õ(MNNS).
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REMARKS

Heuristics: The input list elements at any step of the sieving
algorithm behave like uniformly random and independent vectors
from the sphere Sn

w.
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REMARKS

Choice of N: We choose N such that there exist N distinct codewords
of weight w in C and that we maintain the list size in each iteration,
namely

c
(n
w
)( w

w/2
)(n−w

w/2
) ≤ N ≤

(
n
w

)
· 2k−n.
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PREVIOUS WORK

[MO15]2, [BM18]3, etc. and Kévin Carrier’s thesis4 explored near
neighbor search in the coding setting.

In the lattice-based setting, sieving was successfully combined with
locality-sensitive hashing (filtering) introduced in [BDGL15].

2Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: 2015.

3Leif Both and Alexander May. “Decoding Linear Codes with High Error Rate and Its
Impact for LPN Security”. In: ed. by Tanja Lange and Rainer Steinwandt. 2018.

4Kévin Carrier. “Recherche de Presque-Collisions pour le Décodage et la
Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding
and recognition of error correcting codes)”. PhD thesis. 2020.
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PREVIOUS WORK

[MO15], [BM18], etc. and Kévin Carrier’s thesis explored near
neighbor search in the coding setting.

In the lattice-based setting, sieving was successfully combined with
locality-sensitive hashing (filtering) introduced in [BDGL15]2.

2Anja Becker et al. New directions in nearest neighbor searching with applications
to lattice sieving. 2015.
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(Informal) problem definition

Given a list L of N vectors of weight w, return a list of pairs of vectors
(x, y) from L × L that satisfy |x+ y| = w.

High-level idea

If two vectors overlap in α positions, they are more likely to be close
in space (aka these are ”near neighbors”).
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Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cf - bucket centers,

α - bucketing parameter.

Output: P - list of pairs (x, y) satisfying |x+ y| = w.

for x ∈ L do
for VALIDFILTERS(Cf, α, x) do

add x to Bc
end

end

for x ∈ L do
for c ∈ VALIDFILTERS(Cf, α, x), y ∈ Bc do

if |x+ y| = w then
add (x, y) to P

end
end

end
return P
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NEAR NEIGHBOR SEARCH

The running time:

TNNS = Õ(N · TVALIDFILTERS) + Õ(N · E(VALIDFILTERS) · E(B)).

The memory: MNNS = Õ(N · E(VALIDFILTERS)).
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GUO, JOHANSSON AND NGUYEN [GJN] APPROACH3

Main idea
For any x, y ∈ Sn

w satisfying |x+ y| = w, there exists c ∈ Sn
w/2 such that

|x ∧ c| = |y ∧ c| = w/2.

Parameters:

Cf = Sn
w/2, α = w/2.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

w/2 such that |x ∧ c| = w/2.

3Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.
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CODED HASHING APPROACH (HASH)3

Parameters

Cf = Sn
α ∩ CH, α≤ w/2,

where CH is [n,n− r] binary linear code.

Valid Filters Subroutine
For each x ∈ L, returns all c ∈ Sn

α ∩ CH such that |x ∧ c| = α.

3Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
15
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RANDOM PRODUCT CODES APPROACH (RPC)4

Parameters:

C(i)H ⊆ S
n/t
v/t , CH = C(1)H × · · · × C

(t)
H , α, v ≤ w/2 - to be optimized.

Valid Filters Subroutine
For each x = (x(1), . . . x(t)) ∈ L, returns all c = (c(1), . . . c(t)) ∈ Sn

v ∩ CH
such that

|x(i) ∧ c(i)| = α/t for all i ∈ {1, . . . , t}.

4Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
16
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MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)5

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf|/2d centers but we repeat the
algorithm 2d times.

5Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.
17
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Type Algorithm κ cT(κ, ω) cM(κ, ω)

SievingISD

GJN 0.44 0.1169 0.0279
HASH 0.44 0.1007 0.0849

HASH memo-opt 0.44 0.1007 0.0830
RPC 0.44 0.1001 0.0852

RPC memo-opt 0.44 0.1001 0.0636

Conventional
ISD

PRANGE 0.45 0.1207 0.0000
MMT 0.45 0.1116 0.0541
BJMM 0.43 0.1020 0.0728

BOTH-MAY 0.42 0.0951 0.0754

Table: Worst case running time 2cT(κ,ω)n and corresponding memory usage
2cM(κ,ω)n for different ISD algorithms.
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An efficient sieving-based algorithm for codes.

→ For the worst case, the efficiency is comparable with BJMM.
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IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

Instead of sieving on a full instance, we sieve on the ISD
sub-instance.

Instead of shortening vectors, we iteratively reduce the coset size till
we find vectors in the code but we keep their length unchanged.
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OPEN QUESTIONS

How applicable it is?

Is it inherently different from the other ISD algorithms?
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THANK YOU FOR YOUR ATTENTION!

eprint GitHub repo MCCL fork
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