SIEVING FOR CODES:
FROM GJN TO HASH-BASED AND RPC-BASED APPROACHES

February 2024, ATTACC workshop, Germany

presenting: Simona Etinski (CWI)
based on joint work with: Léo Ducas (CWI, LEI),
Andre Esser (TI1), and Elena Kirshanova (TII, IKBFU)

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Goal: Make the sieving "work” for codes.

Motivation: Sieving is a well-known and widely used technique in
the lattice-based cryptography.

Goal: Make the sieving "work” for codes.

The idea of adapting the sieving to information set decoding
framework was introduced in [GJN23]".

TQian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

SIEVING ISD FRAMEWORK

ISD

SIEVING ISD FRAMEWORK

ISD

Sieving

SIEVING ISD FRAMEWORK

ISD

Sieving

NNS

SIEVING ALGORITHM

Sieving Algorithm

[e] le]e]e}

(Informal) problem definition

Given a list of N vectors in S, find N codewords in C N Sy,

Sieving Algorithm

[e] le]e]e}

(Informal) problem definition

Given a list of N vectors in S, find N codewords in C N Sy,

Remarks on notation:

Sieving Algorithm

[e] le]e]e}

(Informal) problem definition

Given a list of N vectors in S, find N codewords in C N Sy,

Remarks on notation:

- S - a sphere of radius w in F3;

Sieving Algorithm

[e] le]e]e}

(Informal) problem definition

Given a list of N vectors in S, find N codewords in C N Sy,

Remarks on notation:

- S - a sphere of radius w in F3;

- C CFY -an [n, k] binary linear code.

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving
Input :C - [n,Kk] binary linear code, w - weight, N - output size,

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving
Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.

Sample N distinct vectors from Sj; and set as the initial £'.

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.
Sample N distinct vectors from Sj; and set as the initial £'.

fori=1ton—kdo

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.
Sample N distinct vectors from Sj; and set as the initial £'.

fori=1ton—kdo
Invoke near neighbour search oracle NNS(Z, Cr, «) to obtain P.

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.
Sample N distinct vectors from Sj; and set as the initial £'.

fori=1ton—kdo
Invoke near neighbour search oracle NNS(Z, Cr, «) to obtain P.

for (x,y) € P do

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.

Sample N distinct vectors from Sj; and set as the initial £'.
fori=1ton—kdo

Invoke near neighbour search oracle NNS(Z, Cr, «) to obtain P.

for (x,y) € P do
if (x+v) € then
| Add (x +) to £.
end

Sieving Algorithm

[e]e] le]e}

Algorithm Sieving

Input :C - [n,Kk] binary linear code, w - weight, N - output size,
Cr - bucket centers, o - bucketing parameter.

Output: £ - list of codewords c € C NS}, of size |£| = N.

Sample a tower of codes {F} = Co,...,Ch_ =C}.
Sample N distinct vectors from Sj; and set as the initial £'.
fori=1ton—kdo
Invoke near neighbour search oracle NNS(Z, Cr, «) to obtain P.
for (x,y) € P do

if (x+v) € then

| Add (x +) to £.

end

Discard some elements if |£/| > N and set L' + L.
end

end
return £

Sieving Algorithm

[e]e]e] e}

SIEVING

The running time and the memory:

TSIEVING = O(TNNS)7 MSIEVING = @(MNNS)-

Sieving Algorithm

[e]e]e]e] }

REMARKS

Heuristics: The input list elements at any step of the sieving
algorithm behave like uniformly random and independent vectors
from the sphere S).

Sieving Algorithm

[e]e]e]e] }

REMARKS

Choice of N: We choose N such that there exist N distinct codewords
of weight w in C and that we maintain the list size in each iteration,
namely

NEAR NEIGHBOR SEARCH ALGORITHMS

r Search Algorithms

PREVIOUS WORK

[MO15]%, [BM18]3, etc. and Kévin Carrier's thesis* explored near
neighbor search in the coding setting.

2Alexander May and llya Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: 2015.

3Leif Both and Alexander May. “Decoding Linear Codes with High Error Rate and Its
Impact for LPN Security”. In: ed. by Tanja Lange and Rainer Steinwandt. 2018.

“Kévin Carrier. “Recherche de Presque-Collisions pour le Décodage et la
Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding
and recognition of error correcting codes)”. PhD thesis. 2020.

Near Neighbor Search Algorithms

[e] le]e]e}

PREVIOUS WORK

[MO15], [BM18], etc. and Kévin Carrier’s thesis explored near
neighbor search in the coding setting.

In the lattice-based setting, sieving was successfully combined with
locality-sensitive hashing (filtering) introduced in [BDGLI5]?.

2Anja Becker et al. New directions in nearest neighbor searching with applications
to lattice sieving. 2015.

Near Neighbor Search Algorithms

[e]e] le]e}

(Informal) problem definition

Given a list £ of N vectors of weight w, return a list of pairs of vectors
(x,y) from £ x L that satisfy [x +y| = w.

(Informal) problem definition

Given a list £ of N vectors of weight w, return a list of pairs of vectors
(x,y) from £ x L that satisfy [x +y| = w.

High-level idea

If two vectors overlap in « positions, they are more likely to be close
in space (aka these are "near neighbors”).

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search
Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do
for VALIDFILTERS(Cr, c, X) do

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do

for VALIDFILTERS(Cr, c, X) do
| add xto B
end

end

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do

for VALIDFILTERS(Cr, c, X) do
| add xto B
end

end

forx € £ do

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do

for VALIDFILTERS(Cr, c, X) do
| add xto B
end

end

forx e £ do
for ¢ € VALIDFILTERS(Cf, v, X), Y € Bc do

Near Neighbor Search Algorithms

[e]e]e] le}

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do

for VALIDFILTERS(Cr, c, X) do
| add xto B
end

end

forx € £ do
for ¢ € VALIDFILTERS(Cf, v, X), Y € Bc do
if X +y| =w then

Algorithm Near Neighbour Search

Input : L - list of of weight w vectors, Cs - bucket centers,
a - bucketing parameter.

Output: P - list of pairs (x,y) satisfying [x +y| = w.

forx € £ do

for VALIDFILTERS(Cr, c, X) do
| add xto B
end

end

forx € £ do
for ¢ € VALIDFILTERS(Cf, v, X), Y € Bc do
if X +y| =w then
| add (x,y)to P
end
end
end
return P

Near Neighbor Search Algorithms

[e]e]e]e] }

NEAR NEIGHBOR SEARCH

The running time:

Tuns = O(N - Tuariorirers) + O(N - E(VALIDFILTERS) - E(B)).

The memory: Mynys = O(N - E(VALIDFILTERS)).

GJN, HASH-BASED AND RPC-BASED

GJN, Hash-based and RPC-based

[e] leJe]e}

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH?

Main idea

For any x,y € SJ; satisfying |[x +y| = w, there exists ¢ € 8\2/2 such that
XAcl=|yAc|l=w/2

3Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

GJN, Hash-based and RPC-based

[e] leJe]e}

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Main idea

For any x,y € &) satisfying |x +y| = w, there exists c € Ser/z such that
XAc|l=|yAc|=w/2

*Initially, the approach was not presented in the locality-sensitive
filtering fashion, yet it aligns with the framework.

GJN, Hash-based and RPC-based

[e] leJe]e}

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Parameters:
Cr= SVQ/Z, a=Ww/2.

GJN, Hash-based and RPC-based

[e] leJe]e}

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Parameters:
Cr= SVQ/Z, a=Ww/2.

Valid Filters Subroutine

Foreach x € £, returns all ¢ € S , such that [x A c| = w/2.

CODED HASHING APPROACH (HASH)?

Parameters

C=8)NCy, a<sw/2,

where Cy is [n,n — r] binary linear code.

3Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

GJN, Hash-based and RPC-based

[e]e] le]e}

CODED HASHING APPROACH (HASH)?

Parameters
Cr=8NCy, a<sw/2,

where Cy is [n,n — r] binary linear code.

Valid Filters Subroutine
For each x € £, returns all ¢ € S N Cy such that XA c| = a.

3Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

GJN, Hash-based and RPC-based

[e]ele] o}

RANDOM PRODUCT CODES APPROACH (RPC)"

Parameters:

C) SV Cu=C) x - xCY), a,v<w/2-to be optimized.

Valid Filters Subroutine

For each x = (xM,...x®M) € £, returns all ¢ = (cV,...c) € ST N Cx
such that
XA =a/tforallie{1,...,t}.

“Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

GJN, Hash-based and RPC-based

[e]e]e]e] }

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)?

High-level idea

We interleave the bucketing and the checking phase.

°Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

GJN, Hash-based and RPC-based

[e]e]e]e] }

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)?

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf| /29 centers but we repeat the
algorithm 29 times.

5Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

NUMERICAL RESULTS

Numerical results

(] J

—— Prange
- GIN

3 01fF A MMT

- ~ - BJMM

- Y/~ AN N\ I P HASH (memo-opt)
é —— RPC (memo-opt)
£ Both-May

—~ 0.05} ~

3
£

&

0 i
| | | |

| |
0 0.2 0.4 0.6 0.8 1
rate k = k/n

Runtime exponent for different ISD and SievingISD variants.

Numerical results

(] J

Type Algorithm £k Ca(k,w) Cu(k,w)

GJN 0.44 0.1169 0.0279

HASH 0.44 0.1007 0.0849

SievingISD HASH memo-opt 0.44 0.1007 0.0830
RPC 0.44 0.1001 0.0852

RPC memo-opt 0.44 0.1001 0.0636

PRANGE 0.45 0.1207 0.0000

Conventional MMT 045 0.1116 0.0541
ISD BJMM 0.43 0.1020 0.0728
BOTH-MAY 0.42 0.0951 0.0754

Table: Worst case running time 27(**)" and corresponding memory usage
20m(=@)n for different ISD algorithms.

Numerical results

(] J

-x- GJN —— HASH HASH (memo-opt)

q0-2 |7 RPC RPC (memo-opt)

% N T T T
£ gl X i
LE)E\‘ 6 |- -
Il
= 4 i
= PRANGE
320 1
'Y
A — | | | x|

0.100 0.105 0.110 0.115 0.120

cr(k,w)inT= 2cr(m,w)n

Time-memory trade-off curves of different SievingISD instantiations, for
k=0.5and w=H""(0.5).

CONCLUDING REMARKS

Concluding

0e00

An efficient sieving-based algorithm for codes.

Concluding

0e00

An efficient sieving-based algorithm for codes.

— For the worst case, the efficiency is comparable with BJMM.

0102

0.096 0107 | 0112 0117 0121
l l l l

I I I I
BOTH-MAY | BJMM MMT PRANGE

RPC memo-opt
HASH memo-opt

Concluding

[e]e] le]

IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

22

Concluding

[e]e] le]

IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

Instead of sieving on a full instance, we sieve on the ISD
sub-instance.

22

Concluding

[e]e] le]

IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework
(equivalent to [BDGL15]).

Instead of sieving on a full instance, we sieve on the ISD
sub-instance.

Instead of shortening vectors, we iteratively reduce the coset size till
we find vectors in the code but we keep their length unchanged.

22

Concluding

[eJe]e])

OPEN QUESTIONS

How applicable it is?

23

Concluding

[eJe]e])

OPEN QUESTIONS

How applicable it is?

Is it inherently different from the other ISD algorithms?

23

eprint GitHub repo MCCLfork

