#### SIEVING FOR CODES: FROM GJN TO HASH-BASED AND RPC-BASED APPROACHES

February 2024, ATTACC workshop, Germany

presenting: Simona Etinski (CWI) based on joint work with: Léo Ducas (CWI, LEI), Andre Esser (TII), and Elena Kirshanova (TII, IKBFU)

| eving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|-----------------|---------------------------------|-------------------------------|-------------------|--------------------|
| 00000           | 00000                           |                               | OO                | 00000              |
|                 |                                 |                               |                   |                    |

# **Motivation**: Sieving is a well-known and widely used technique in the lattice-based cryptography.

| ieving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Conclud |
|------------------|---------------------------------|-------------------------------|-------------------|---------|
| 00000            | 00000                           |                               | OO                | 00000   |
|                  |                                 |                               |                   |         |

**Motivation**: Sieving is a well-known and widely used technique in the lattice-based cryptography.

Goal: Make the sieving "work" for codes.

| eving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remark |
|-----------------|---------------------------------|-------------------------------|-------------------|-------------------|
| 0000            | 00000                           | OOOOO                         | OO                |                   |
|                 |                                 |                               |                   |                   |

**Motivation**: Sieving is a well-known and widely used technique in the lattice-based cryptography.

Goal: Make the sieving "work" for codes.

The idea of adapting the sieving to **information set decoding** framework was introduced in [GJN23]<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

Vear Neighbor Search Algorithm: ୦୦୦୦୦ GJN, Hash-based and RPC-based 00000 Numerical results

Concluding remarks 00000

#### SIEVING ISD FRAMEWORK



Near Neighbor Search Algorithm: 00000 GJN, Hash-based and RPC-based 00000 Numerical results

Concluding remarks

#### SIEVING ISD FRAMEWORK



Vear Neighbor Search Algorithm ၁୦୦୦୦ GJN, Hash-based and RPC-based 00000 Numerical results

Concluding remarks 00000

#### SIEVING ISD FRAMEWORK



# SIEVING ALGORITHM

| Sieving Algorithm |  |
|-------------------|--|
| 00000             |  |

## Given a list of N vectors in $\mathcal{S}^n_w$ find N codewords in $\mathcal{C}\cap\mathcal{S}^n_w.$

| Sieving. | Algorithm |
|----------|-----------|
| 0000     | C         |

# Given a list of N vectors in $\mathcal{S}^n_w$ , find N codewords in $\mathcal{C}\cap\mathcal{S}^n_w.$

Remarks on notation:

| Sieving Algorithm |  |
|-------------------|--|
| 00000             |  |

# Given a list of N vectors in $\mathcal{S}^n_w$ , find N codewords in $\mathcal{C}\cap\mathcal{S}^n_w.$

#### Remarks on notation:

 $\cdot \ \mathcal{S}_w^n$  - a sphere of radius w in  $\mathbb{F}_2^n$ ;

| Sieving Algorithm |  |
|-------------------|--|
| 00000             |  |

Given a list of N vectors in  $\mathcal{S}^n_w$  , find N codewords in  $\mathcal{C}\cap\mathcal{S}^n_w.$ 

# Remarks on notation:

- $\cdot \ \mathcal{S}_w^n$  a sphere of radius w in  $\mathbb{F}_2^n$ ;
- $\cdot \ \mathcal{C} \subseteq \mathbb{F}_2^n$  an [n,k] binary linear code.

| eving Algorithm<br>O●OO | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based<br>OOOOO | Numerical results<br>OO | Concluding remarks |
|-------------------------|---------------------------------|----------------------------------------|-------------------------|--------------------|
|                         |                                 |                                        |                         |                    |

Input : C - [n, k] binary linear code, w - weight, N - output size,

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_{\rm f}$  - bucket centers,  $\alpha$  - bucketing parameter.

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_f$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_{w}^{n}$  of size  $|\mathcal{L}| = N$ .

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_f$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n = \mathcal{C}_0, \dots, \mathcal{C}_{n-k} = \mathcal{C}\}.$ 

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_f$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n=\mathcal{C}_0,\ldots,\mathcal{C}_{n-k}=\mathcal{C}\}.$ 

Sample N distinct vectors from  $\mathcal{S}^n_w$  and set as the initial  $\mathcal{L}'$ .

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_{\rm f}$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n = \mathcal{C}_0, \dots, \mathcal{C}_{n-k} = \mathcal{C}\}.$ 

Sample N distinct vectors from  $\mathcal{S}^n_w$  and set as the initial  $\mathcal{L}'$ .

for i = 1 to n - k do

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_f$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n = \mathcal{C}_0, \dots, \mathcal{C}_{n-k} = \mathcal{C}\}.$ 

Sample N distinct vectors from  $\mathcal{S}^n_w$  and set as the initial  $\mathcal{L}'$ .

for i = 1 to n - k do

Invoke near neighbour search oracle NNS( $\mathcal{L}, \mathcal{C}_{f}, \alpha$ ) to obtain  $\mathcal{P}$ .

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_{f}$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n = \mathcal{C}_0, \dots, \mathcal{C}_{n-k} = \mathcal{C}\}.$ 

Sample N distinct vectors from  $\mathcal{S}^n_w$  and set as the initial  $\mathcal{L}'.$ 

```
for i = 1 to n - k do
```

Invoke near neighbour search oracle NNS( $\mathcal{L}, \mathcal{C}_{f}, \alpha$ ) to obtain  $\mathcal{P}$ .

```
for (x,y)\in \mathcal{P} do
```

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_{\rm f}$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n = \mathcal{C}_0, \dots, \mathcal{C}_{n-k} = \mathcal{C}\}.$ 

Sample N distinct vectors from  $\mathcal{S}^n_w$  and set as the initial  $\mathcal{L}'.$ 

```
for i = 1 to n - k do
```

Invoke near neighbour search oracle NNS( $\mathcal{L}, \mathcal{C}_{f}, \alpha$ ) to obtain  $\mathcal{P}$ .

```
\begin{array}{l} \mbox{for } (x,y) \in \mathcal{P} \mbox{ do} \\ & \mbox{if } (x+y) \in \mathcal{C}_i \mbox{ then} \\ & \mbox{ } \mbox{ Add } (x+y) \mbox{ to } \mathcal{L}. \\ & \mbox{ end} \end{array}
```

**Input** : C - [n, k] binary linear code, w - weight, N - output size,  $C_{\rm f}$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{L}$  - list of codewords  $\mathbf{c} \in \mathcal{C} \cap \mathcal{S}_w^n$  of size  $|\mathcal{L}| = N$ .

Sample a tower of codes  $\{\mathbb{F}_2^n=\mathcal{C}_0,\ldots,\mathcal{C}_{n-k}=\mathcal{C}\}.$ 

Sample N distinct vectors from  $\mathcal{S}^n_w$  and set as the initial  $\mathcal{L}'$ .

```
for i = 1 to n - k do
```

Invoke near neighbour search oracle NNS( $\mathcal{L}, \mathcal{C}_{f}, \alpha$ ) to obtain  $\mathcal{P}$ .

```
for (x, y) \in \mathcal{P} do

\begin{vmatrix} \text{if } (x + y) \in \mathcal{C}_i \text{ then} \\ | & \text{Add } (x + y) \text{ to } \mathcal{L}. \\ \text{end} \\ & \text{Discard some elements if } |\mathcal{L}'| > \text{N and set } \mathcal{L}' \leftarrow \mathcal{L}. \\ \text{end} \\ & \text{def} \end{vmatrix}
```

end

return  $\mathcal{L}$ 

| Sieving | Algorithm      |
|---------|----------------|
| 0000    | o <sup>-</sup> |

Near Neighbor Search Algorithm 00000 GJN, Hash-based and RPC-based 00000

#### SIEVING

#### The running time and the memory:

$$\mathsf{T}_{\text{SIEVING}} = \tilde{\mathcal{O}}(\mathsf{T}_{\text{NNS}}), \quad \mathsf{M}_{\text{SIEVING}} = \tilde{\mathcal{O}}(\mathsf{M}_{\text{NNS}}).$$

| Sieving Algorithm |  |
|-------------------|--|
| 00000             |  |

#### Remarks

# Heuristics: The input list elements at any step of the sieving algorithm behave like uniformly random and independent vectors from the sphere $S_w^n$ .

| Sieving Algorithm |  |
|-------------------|--|
| 00000             |  |

#### Remarks

Choice of N: We choose N such that there exist N distinct codewords of weight w in  ${\cal C}$  and that we maintain the list size in each iteration, namely

$$\frac{C\binom{n}{W}}{\binom{w}{W/2}\binom{n-w}{W/2}} \leq N \leq \binom{n}{W} \cdot 2^{k-n}.$$

# **NEAR NEIGHBOR SEARCH ALGORITHMS**

#### PREVIOUS WORK

[MO15]<sup>2</sup>, [BM18]<sup>3</sup>, etc. and Kévin Carrier's thesis<sup>4</sup> explored **near neighbor search** in the coding setting.

<sup>2</sup>Alexander May and Ilya Ozerov. "On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes". In: 2015.

<sup>3</sup>Leif Both and Alexander May. "Decoding Linear Codes with High Error Rate and Its Impact for LPN Security". In: ed. by Tanja Lange and Rainer Steinwandt. 2018.

<sup>4</sup>Kévin Carrier. "Recherche de Presque-Collisions pour le Décodage et la Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding and recognition of error correcting codes)". PhD thesis. 2020.

#### **PREVIOUS WORK**

# [MO15], [BM18], etc. and Kévin Carrier's thesis explored **near neighbor search** in the coding setting.

In the lattice-based setting, **sieving** was successfully combined with **locality-sensitive hashing (filtering)** introduced in [BDGL15]<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>Anja Becker et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

| Sieving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|-------------------|---------------------------------|-------------------------------|-------------------|--------------------|
| 00000             | OO●OO                           |                               | OO                | 00000              |
|                   |                                 |                               |                   |                    |

Given a list  $\mathcal{L}$  of N vectors of weight w, return a list of pairs of vectors  $(\mathbf{x}, \mathbf{y})$  from  $\mathcal{L} \times \mathcal{L}$  that satisfy  $|\mathbf{x} + \mathbf{y}| = w$ .

| Sieving Algorithm<br>00000 | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results<br>OO | Concluding remarks<br>00000 |
|----------------------------|---------------------------------|-------------------------------|-------------------------|-----------------------------|
|                            |                                 |                               |                         |                             |

Given a list  $\mathcal{L}$  of N vectors of weight w, return a list of pairs of vectors  $(\mathbf{x}, \mathbf{y})$  from  $\mathcal{L} \times \mathcal{L}$  that satisfy  $|\mathbf{x} + \mathbf{y}| = w$ .

#### High-level idea

If two vectors overlap in  $\alpha$  positions, they are more likely to be close in space (aka these are "near neighbors").

#### Input $: \mathcal{L}$ - list of of weight w vectors, $\mathcal{C}_f$ - bucket centers,

 $\alpha$  - bucketing parameter.

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|----------------|---------------------------------|-------------------------------|-------------------|--------------------|
|                | 000●0                           | OOOOO                         | OO                | 00000              |
|                |                                 |                               |                   |                    |

**Input** :  $\mathcal{L}$  - list of of weight w vectors,  $C_{\rm f}$  - bucket centers,  $\alpha$  - bucketing parameter.

**Output:**  $\mathcal{P}$  - list of pairs (x, y) satisfying |x + y| = w.

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|----------------|---------------------------------|-------------------------------|-------------------|--------------------|
| 2000           | OOO●O                           | OOOOO                         | OO                | 00000              |
|                |                                 |                               |                   |                    |

**Output:**  $\mathcal{P}$  - list of pairs (x, y) satisfying |x + y| = w.

for  $x \in \mathcal{L}$  do

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|----------------|---------------------------------|-------------------------------|-------------------|--------------------|
| 0000           | OOO●O                           | OOOOO                         | OO                | 00000              |
|                |                                 |                               |                   |                    |

```
Output: P - list of pairs (x, y) satisfying |x + y| = w.
```

for  $x \in \mathcal{L}$  do

```
for VALIDFILTERS(\mathcal{C}_{f}, \alpha, \mathbf{x}) do
```

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based<br>00000 | Numerical results<br>OO | Concluding remarks<br>00000 |
|----------------|---------------------------------|----------------------------------------|-------------------------|-----------------------------|
|                |                                 |                                        |                         |                             |

```
Output: P - list of pairs (x, y) satisfying |x + y| = w.
```

```
 \begin{array}{l} \mbox{for } \mathbf{x} \in \mathcal{L} \mbox{ do} \\ \mbox{for VALIDFILTERS}(\mathcal{C}_{f}, \alpha, \mathbf{x}) \mbox{ do} \\ \mbox{|} \mbox{ add } \mathbf{x} \mbox{ to } \mathcal{B}_{c} \\ \mbox{end} \end{array}
```

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based<br>OOOOO | Numerical results<br>OO | Concluding remarks<br>00000 |
|----------------|---------------------------------|----------------------------------------|-------------------------|-----------------------------|
|                |                                 |                                        |                         |                             |

```
Output: P - list of pairs (x, y) satisfying |x + y| = w.
```

```
 \begin{array}{l} \mbox{for } \mathbf{x} \in \mathcal{L} \mbox{ do} \\ \mbox{for VALIDFILTERS}(\mathcal{C}_{f}, \alpha, \mathbf{x}) \mbox{ do} \\ \mbox{|} \mbox{ add } \mathbf{x} \mbox{ to } \mathcal{B}_{c} \\ \mbox{end} \end{array}
```

end

for  $x \in \mathcal{L}$  do

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|----------------|---------------------------------|-------------------------------|-------------------|--------------------|
|                | OOO●O                           | OOOOO                         | OO                | 00000              |
|                |                                 |                               |                   |                    |

```
Output: P - list of pairs (x, y) satisfying |x + y| = w.
```

```
 \begin{array}{l} \mbox{for } \mathbf{x} \in \mathcal{L} \mbox{ do} \\ \mbox{for VALIDFILTERS}(\mathcal{C}_{\rm f}, \alpha, \mathbf{x}) \mbox{ do} \\ \mbox{|} \mbox{ add } \mathbf{x} \mbox{ to } \mathcal{B}_{\rm c} \\ \mbox{end} \end{array}
```

```
for x \in \mathcal{L} do
```

```
for c \in VALIDFILTERS(C_f, \alpha, x), y \in B_c do
```

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|----------------|---------------------------------|-------------------------------|-------------------|--------------------|
|                | OOO●O                           | OOOOO                         | OO                | 00000              |
|                |                                 |                               |                   |                    |

```
Output: \mathcal{P} - list of pairs (x, y) satisfying |x + y| = w.
```

```
 \begin{array}{l} \mbox{for } \mathbf{x} \in \mathcal{L} \mbox{ do} \\ \mbox{for VALIDFILTERS}(\mathcal{C}_{\rm f}, \alpha, \mathbf{x}) \mbox{ do} \\ \mbox{|} \mbox{ add } \mathbf{x} \mbox{ to } \mathcal{B}_{\rm c} \\ \mbox{end} \end{array}
```

```
\label{eq:constraint} \begin{array}{ll} \mbox{for } \mathbf{x} \in \mathcal{L} \mbox{ do} \\ & \mbox{for } \mathbf{c} \in \mbox{VALIDFILTERS}(\mathcal{C}_f, \alpha, \mathbf{x}), \quad \mathbf{y} \in \mathcal{B}_c \mbox{ do} \\ & \mbox{ if } |\mathbf{x} + \mathbf{y}| = \mbox{w then} \\ & \mbox{ |} \end{array}
```

| ving Algorithm | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks |
|----------------|---------------------------------|-------------------------------|-------------------|--------------------|
| 2000           | OOO●O                           | OOOOO                         | OO                | 00000              |
|                |                                 |                               |                   |                    |

**Input** :  $\mathcal{L}$  - list of of weight w vectors,  $C_{\rm f}$  - bucket centers,  $\alpha$  - bucketing parameter.

```
Output: \mathcal{P} - list of pairs (x, y) satisfying |x + y| = w.
```

```
 \begin{array}{l} \mbox{for } \mathbf{x} \in \mathcal{L} \mbox{ do} \\ \mbox{for VALIDFILTERS}(\mathcal{C}_{\rm f}, \alpha, \mathbf{x}) \mbox{ do} \\ \mbox{|} \mbox{ add } \mathbf{x} \mbox{ to } \mathcal{B}_{\rm c} \\ \mbox{end} \end{array}
```

```
for \mathbf{x} \in \mathcal{L} do

\begin{vmatrix} \text{for } \mathbf{c} \in \text{VALIDFILTERS}(\mathcal{C}_{f}, \alpha, \mathbf{x}), & \mathbf{y} \in \mathcal{B}_{c} \text{ do} \\ | \text{if } |\mathbf{x} + \mathbf{y}| = \text{w then} \\ | & \text{add } (\mathbf{x}, \mathbf{y}) \text{ to } \mathcal{P} \\ | & \text{end} \\ \text{end} \\ \text{end} \\ \text{return } \mathcal{P} \end{aligned}
```

Near Neighbor Search Algorithms

GJN, Hash-based and RPC-based OOOOO Numerical results

Concluding remarks 00000

# NEAR NEIGHBOR SEARCH

#### The **running time**:

$$\mathsf{T}_{\mathsf{NNS}} = \tilde{\mathcal{O}}(\mathsf{N} \cdot \mathsf{T}_{\mathsf{VALIDFILTERS}}) + \tilde{\mathcal{O}}(\mathsf{N} \cdot \mathbb{E}(\mathsf{VALIDFILTERS}) \cdot \mathbb{E}(\mathcal{B})).$$

The memory: 
$$M_{NNS} = \tilde{O}(N \cdot \mathbb{E}(VALIDFILTERS)).$$

# GJN, HASH-BASED AND RPC-BASED

# GUO, JOHANSSON AND NGUYEN [GJN] APPROACH<sup>3</sup>

#### Main idea

For any  $\mathbf{x}, \mathbf{y} \in S_w^n$  satisfying  $|\mathbf{x} + \mathbf{y}| = w$ , there exists  $\mathbf{c} \in S_{w/2}^n$  such that  $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = w/2$ .

<sup>&</sup>lt;sup>3</sup>Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

# GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

#### Main idea

For any  $\mathbf{x}, \mathbf{y} \in S_w^n$  satisfying  $|\mathbf{x} + \mathbf{y}| = w$ , there exists  $\mathbf{c} \in S_{w/2}^n$  such that  $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = w/2$ .

\*Initially, the approach was not presented in the locality-sensitive filtering fashion, yet it aligns with the framework.

Near Neighbor Search Algorithm 00000 GJN, Hash-based and RPC-based 00000 Numerical results

Concluding remarks 00000

# GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

Parameters:

$$\mathcal{C}_{f} = \mathcal{S}_{w/2}^{n}, \quad \alpha = w/2.$$

# GUO, JOHANSSON AND NGUYEN [GJN] APPROACH

#### Parameters:

$$\mathcal{C}_{f} = \mathcal{S}_{w/2}^{n}, \quad \alpha = w/2.$$

#### Valid Filters Subroutine

For each  $\mathbf{x} \in \mathcal{L}$ , returns all  $\mathbf{c} \in \mathcal{S}_{w/2}^n$  such that  $|\mathbf{x} \wedge \mathbf{c}| = w/2$ .

Near Neighbor Search Algorithm 00000 GJN, Hash-based and RPC-based

Numerical result:

Concluding remarks 00000

# CODED HASHING APPROACH (HASH)<sup>3</sup>

#### Parameters

$$\mathcal{C}_{f} = \mathcal{S}_{\alpha}^{n} \cap \mathcal{C}_{\mathcal{H}}, \quad \alpha \leq w/2,$$

where  $\mathcal{C}_{\mathcal{H}}$  is [n,n-r] binary linear code.

<sup>&</sup>lt;sup>3</sup>Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

# CODED HASHING APPROACH (HASH)<sup>3</sup>

#### Parameters

$$\mathcal{C}_{f} = \mathcal{S}^{n}_{\alpha} \cap \mathcal{C}_{\mathcal{H}}, \quad \alpha \leq w/2,$$

where  $C_{\mathcal{H}}$  is [n, n - r] binary linear code.

#### Valid Filters Subroutine

For each  $\mathbf{x} \in \mathcal{L}$ , returns all  $\mathbf{c} \in S_{\alpha}^{n} \cap C_{\mathcal{H}}$  such that  $|\mathbf{x} \wedge \mathbf{c}| = \alpha$ .

<sup>&</sup>lt;sup>3</sup>Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

#### RANDOM PRODUCT CODES APPROACH (RPC)<sup>4</sup>

#### Parameters:

$$\mathcal{C}_{\mathcal{H}}^{(i)} \subseteq \mathcal{S}_{v/t}^{n/t}, \quad \mathcal{C}_{\mathcal{H}} = \mathcal{C}_{\mathcal{H}}^{(1)} \times \cdots \times \mathcal{C}_{\mathcal{H}}^{(t)}, \quad \alpha, v \leq w/2 \text{ - to be optimized.}$$

#### Valid Filters Subroutine

For each  $\mathbf{x} = (\mathbf{x}^{(1)}, \dots \mathbf{x}^{(t)}) \in \mathcal{L}$ , returns all  $\mathbf{c} = (\mathbf{c}^{(1)}, \dots \mathbf{c}^{(t)}) \in \mathcal{S}_{v}^{n} \cap \mathcal{C}_{\mathcal{H}}$ such that  $|\mathbf{x}^{(i)} \wedge \mathbf{c}^{(i)}| = \alpha/t$  for all  $i \in \{1, \dots, t\}$ .

<sup>&</sup>lt;sup>4</sup>Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

Concluding remarks

# Memory optimal versions (HASH and RPC memo-opt)<sup>5</sup>

High-level idea

We interleave the bucketing and the checking phase.

<sup>&</sup>lt;sup>5</sup>Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

# Memory optimal versions (HASH and RPC memo-opt)<sup>5</sup>

#### High-level idea

We interleave the bucketing and the checking phase.

#### Memory optimal approach

The initial set of filters contains  $|\mathcal{C}_f|/2^d$  centers but we repeat the algorithm  $2^d$  times.

<sup>&</sup>lt;sup>5</sup>Léo Ducas et al. Asymptotics and Improvements of Sieving for Codes. 2023.

# NUMERICAL RESULTS



Runtime exponent for different ISD and SievingISD variants.

| Sieving Algorithm<br>20000 | Near Neighbor Search Algorithms | GJN, Hash-based and RPC-based | Numerical results | Concluding remarks<br>00000 |
|----------------------------|---------------------------------|-------------------------------|-------------------|-----------------------------|
|                            |                                 |                               |                   |                             |

| Туре         | oe Algorithm  |      | $C_T(\kappa,\omega)$ | $C_M(\kappa,\omega)$ |
|--------------|---------------|------|----------------------|----------------------|
|              | GJN           | 0.44 | 0.1169               | 0.0279               |
|              | HASH          | 0.44 | 0.1007               | 0.0849               |
| SievingISD   | HASH memo-opt | 0.44 | 0.1007               | 0.0830               |
|              | RPC           | 0.44 | 0.1001               | 0.0852               |
|              | RPC memo-opt  | 0.44 | 0.1001               | 0.0636               |
|              | Prange        | 0.45 | 0.1207               | 0.0000               |
| Conventional | MMT           | 0.45 | 0.1116               | 0.0541               |
| ISD          | BJMM          | 0.43 | 0.1020               | 0.0728               |
|              | Βοτη-Μαγ      | 0.42 | 0.0951               | 0.0754               |

**Table:** Worst case running time  $2^{c_T(\kappa,\omega)n}$  and corresponding memory usage  $2^{c_M(\kappa,\omega)n}$  for different ISD algorithms.



Time-memory trade-off curves of different SievingISD instantiations, for  $\kappa = 0.5$  and  $\omega = H^{-1}(0.5)$ .

 $C_{T}(\kappa,\omega)$  in  $T = 2^{C_{T}(\kappa,\omega)n}$ 

# CONCLUDING REMARKS

#### An efficient **sieving-based** algorithm for **codes**.

An efficient **sieving-based** algorithm for **codes**.

 $\rightarrow$  For the worst case, the efficiency is comparable with BJMM.



#### IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework (equivalent to [BDGL15]).

#### IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework (equivalent to [BDGL15]).

Instead of sieving on a full instance, we **sieve** on the **ISD sub-instance**.

#### IN COMPARISON TO LATTICE SIEVING

A new alignment of the lattice-based and code-based framework (equivalent to [BDGL15]).

Instead of sieving on a full instance, we **sieve** on the **ISD sub-instance**.

Instead of shortening vectors, we iteratively reduce the coset size till we find vectors in the code but we keep their length unchanged.

Iear Neighbor Search Algorithm: DOOOO GJN, Hash-based and RPC-based 00000 Numerical results

Concluding remarks

#### **OPEN QUESTIONS**

How applicable it is?

Iear Neighbor Search Algorithm: DOOOO GJN, Hash-based and RPC-based 00000 Numerical results 00 Concluding remarks 000●0

#### **OPEN QUESTIONS**

How applicable it is?

#### Is it inherently different from the other ISD algorithms?

Near Neighbor Search Algorithms 00000 GJN, Hash-based and RPC-based

Numerical results

Concluding remarks

# THANK YOU FOR YOUR ATTENTION!

